Electron momentum distributions in metals using the Angular Correlation of positron Annihilation Radiation (ACAR)

24th May, 2010

Supervisors: Prof. C. D. Beling Department of Physics, HKU

Prof. S. Fung Department of Physics, HKU Presenter: Leung Wai Yan 2007132498

Positrons - Antimatter of electrons

- Mass: 0.511MeV
- Charge: +1
- Spin: ¹/₂
- Antimatter of electrons
- Theorized by Paul. A.M. Dirac
- Discovered by Carl D. Anderson

Electron-positron annihilation

Early positron research

1 Background Theory

Angular Correlation of Annihilation Radiation

1 Background Theory

Angular Correlation of Annihilation Radiation

$$\alpha = \frac{\sqrt{p^2 - p_z^2}}{m_0 c} \tag{2.7}$$

For small angles,

$$\theta = \frac{p_z}{m_0 c}$$
(2.8)
$$\phi = \frac{p_y}{m_0 c}$$
(2.9)

Fermi Gas Model

Energy level of a fermi gas

$$E = \frac{\hbar^2 k^2}{2m}$$

Fermi-energy and Fermi-momentum

$$E_F = \frac{\hbar^2 \pi^2}{2m} \left(\frac{3n}{\pi}\right)^{\frac{2}{3}} \qquad E_F = \frac{\hbar^2 k_F^2}{2m} \qquad p_F = \hbar k_F$$

Distribution in the magnitude of momentum

$$N(p) = p^2 \text{ for } p^2 < p_F^2$$

= 0 for $p^2 > p_F^2$

Distribution in the x component of momentum

$$N_x(p_x) = (p_F^2 - p_z^2)$$
 for $p^2 < p_F^2$
= 0 for $p^2 > p_F^2$

1 Background Theory

Chapeter 2

ACAR EXPERIMENT

24th May, 2010

1D ACAR Spectrometer

2 ACAR Experiment

Schematic Diagram

2 ACAR Experiment

Positron Sources

- Germanium 68
- Half life: 275 days
- All decay into Gallium 68 first

Decay into By	Stable Zinc-68	Excited Zinc-68 +1.02keV γ-ray
Positron emission	84%	3.5%
Electron capture	9.8%	3.9%

Germanium Decay Diagram

Germanium-68 Source

Gamma-Gamma coincidence electronic setup

2 ACAR Experiment

High-Voltage power supply

- Provide enough power for the operation of the photomultiplier tube in the Nal Scintillation detectors
- Left Detector Model :
- Right Detector Model :

Ortec 556H (0.6V)

Ortec 456 (0.6V)

Nal(TI) Scintillation Detector

- The Scintillation Detector detects the gamma ray and releases photo electrons to a photomultiplier tube.
- The photomultiplier tube increases the number of photoelectrons to make a current pulse.

Scintillation Preamplifier

- Model: Ortec 113
- Extract the signal from the scintillation detectors
- Change the charges from the PM Tube to produce a voltage pulse

Signal Shape

Amplifier

- Model: Ortec 590A
- Low-noise shaping amplifier (active-filter shaping on the incoming signal)
- Unipolar semi-Gaussian pulse shape

Timing Single-Channel Analyzer

- Model: Ortec 551
- Select specific range of pulses
- Logic pulses will be generated only if the peak of the input signals falls within the range

Universal Coincidence

- Model: Ortec 418A
- Generate a logic pulse if a signal from one of the inputs arrived within the resolving time of a pulse from another input.

Coincidence Requirements When Switch Setting is 2.

Multifunction Data Acquisition (DAQ) Card

2 ACAR Experiment

Digimatic measuring gauge

LabVIEW Program

Front Panel

LabVIEW Program

Block Diagram

Other software

- GNU plot
 - For plotting the graph
- C++ language
 - -For customized programming

Chapeter 3

RESULT AND DATA ANALYSIS

24th May, 2010

Aluminium

Aluminium

Aluminium

N(θ)/N versus θ

Copper

 $N(\theta)/N$ versus θ

Copper

Copper

 $N(\theta)/N$ versus θ

Stainless steel

 $N(\theta)/N$ versus θ

Stainless steel

Comparison with Fermi gas model

Aluminium				
	Fermi-gas model	Experimental value	Percentage difference	
Maximum angular deviation θ_{max}	6.75mrad	6.83mrad	1.19%	
Fermi momentum <i>P_F</i>	1.846×10^{-24}	1.867×10^{-24}	1.14%	
Fermi wave number k_F	1.750×10^{10}	1.770×10^{10}	1.14%	
Fermi energy E_F	12.324 <i>eV</i>	11.94 <i>eV</i>	3.12%	
Copper				
	Fermi-gas model	Experimental value	Percentage difference	
Maximum angular deviation θ_{max}	5.23mrad	7.353mrad	1.19%	
Fermi momentumP _F	1.429×10^{-24}	2.0094×10^{-24}	40.6%	
Fermi wave number k_F	1.356×10^{10}	1.961×10^{10}	44.6%	
Fermi energy E_F	7 <i>eV</i>	13.835eV	97.6%	
Stainless steel				

	Fermi-gas model	Experimental value	Percentage difference
Maximum angular deviation θ_{max}	6.59mrad	7.581mrad	15%
Fermi momentum <i>P_F</i>	1.800×10^{-24}	2.072×10^{-24}	15.1%
Fermi wave number k_F	1.707×10^{10}	1.965×10^{10}	15%%
Fermi energy E_F	11.1 <i>eV</i>	14.706eV	32.4%

Comparison with Fermi gas model

- DeBenedetti suggested that there are three types of metals that can be classified according to the ACAR results
- Group A: Li, Na, Be, Mg, Al. Ge, Sn, and Bi
 - Distributions that ended at a sharp break
 - the distribution curve have an inverted parabola at the center
 - Have a long flat tail to large angle

Comparison with Fermi gas model

• Group B:Ca, Ba, Zn, Cd, and Pb

 Also have a central parabola but the tail is comparatively larger than group A

- Group C:Cu, Ag, Au, Fe, Co,Ni, Rh, Pd, Pt and W
 - Do not follow this distribution and show a "bell-shaped angular distribution"

Chapeter 4

DISCUSSION

24th May, 2010

Bibliography

- [1] Michael Charlton and John Walkin Humberson. Positron physics. 2000.
- [2] Chung-choi. Cheng. Positron beam studies of fluorine implanted gallium nitride and aluminium gallium nitride [electronic resource] / by cheng chung choi. Master's thesis, University of Hong Kong, 2010.
- [3] Bernd Crasemann, D. E. Rehfuss, and H. T. Easterday. Disintegration of ge68. Phys. Rev., 102(5):1344–1346, Jun 1956.
- [4] Enrico Fermi. Positron solid state physics : proceedings of the International school of physics "Enrico Fermi", Varenna on Lake Como, Villa Monastero, 14-24 July 1981 : course LXXXIII. North-Holland [for the Italian physical society], Bologna; Amsterdam; New York, 1983.
- [5] Enrico Fermi. *Positron spectroscopy of solids*. IOS Press ; Distributor in Japan, Ohmsha, Amsterdam; Washington, DC; Tokyo, Japan, 1995.
- [6] Glenn F. Knoll. Radiation detection and measurement / Glenn F. Knoll. Wiley, New York, 2000.

Bibliography

- [7] R. Krause-Rehberg and H. S. Leipner. *Positron annihilation in semiconductors : defect studies*. Springer, Berlin; New York, 1999.
- [8] G. Lang and DeBenedetti. Angular correlation of annihilation radiation in various substances. *Phys. Rev.*, 108(4):914–921, Nov 1957.
- [9] G. Lang, S. DeBenedetti, and R. Smoluchowski. Measurement of electron momentum by positron annihilation. *Phys. Rev.*, 99(2):596–598, Jul 1955.
- [10] ORTEC. Ortec catalog, 2010.
- [11] Eckert & Ziegler Isotope Products. Eckert & ziegler reference & calibration sources, 2008.
- [12] Miles N. Wernick and John N. Aarsvold. *Emission tomography : the fundamentals of PET and SPECT*. Elsevier Academic Press, Amsterdam; Boston, 2004.

END